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Abstract-A study is made of the average rate of heat transferred to the wall of a rectangular channel when a 
hot incompressible non-Newtonian fluid flows through it. The fluid is that which is commonly called ‘third 
grade’ and is the Rivlin-Ericksen fluid of highest order which can yield rectilinear flow without secondary 
cross flow in a rectangular channel. A heat-transfer coefficient has been evaluated for several values of a non- 
Newtonian parameter C, and for a range of rectangular geometries from the square at one end to infinite 
parallel planes at the other. The results show increasing enhancement ofthe heat-transfer coefficient for any E 
value, on moving away from the square towards narrower rectangles. An increase of the heat-transfer 
coefficient is also found for those fluids which exhibit large strain-rate gradients in the wall region of an 

arbitrary rectangular channel. 

NOMENCLATURE 

T, stress tensor; 

Pt hydrostatic pressure; 

S, determinate stress; 

%l average velocity; 

T, temperature field; 

CP- specific heat at constant pressure; 

k, thermal conductivity; 

Pe, P&let number ; 
d, representative length ; 
N44, local Nusselt number ; 

Q,(z), local meaned temperature; 

~?%,%B,, 
BZ? 83, material parameters; 

6, specific driving force; 

Y> ratio of long to short side of rectangle ; 

P, density ; 
V, body force potential ; 

$3 PIP + v. 

1. INTRODUCTION 

THE EVALUATION of the exchange of heat between a hot 
Newtonian fluid and the cold wall of the channel in 
which it flows has been reviewed extensively in the 
literature. On the other hand, relatively little attention 
has been given to the heat-transfer problem for 
viscoelastic fluids, which is rather surprising in view of 
the many applications that it may have. Schenk and 
Van Laar [l] and Mahalingam et al. [2] for a circular 
tube, Chandrupatla and Sastri [3] for a square chan- 
nel, have obtained increases of greater or lesser extent 
in the heat-transfer coefficient by using various empiri- 
cal models to exhibit non-Newtonian fluid response. 
One of the difficulties in the way of a serious analytical 
approach is that for viscoelastic fluids rectilinear flow 
in channels, aside from those with circular cross 

section or consisting of a gap between infinite parallel 
planes, is not generally possible because it is well 
known that secondary flow occurs in the cross section 
of the channel. In recent experimental work Mena et al. 

[4] have found enhanced heat transfer for a rec- 
tangular channel compared with a circular tube, a 
result they attribute to secondary flow. In earlier 
experiments, Oliver and Karim [5] had obtained 
increases in the heat-transfer coefficient for flattened 
(circular) tubes when compared to a circular channel. 
These increases they attributed partly to increased 
tube-wall shear rate for the flattened tubes and partly 
to secondary flow patterns. 

An extensive review of viscoelastic response can be 
read in [6]. In particular the fluid considered for the 
purposes of this report is the third order 
Rivlin-Ericksen fluid [7], sometimes called a fluid of 
third grade, which may be viewed as an approxi- 
mation, to within terms of order three in the time scale, 
for slow motions of an incompressible simple fluid [8]. 
This is the fluid of highest order that is capable of 
sustaining rectilinear flow in an arbitrary channel 
without secondary transverse flow. By obviating sec- 
ondary flow we hope to isolate the effect of wall shear 
rate on the heat-transfer coefficient for a variety of 
rectangular channels. We find as a general conclusion 
that a non-Newtonian parameter Fdefined in the text, 
which yields increased or decreased strain-rate gra- 
dients at the channel wall according to whether it is 
negative or positive, leads correspondingly to en- 
hanced or diminished heat transfer. This conclusion is 
in agreement with results obtained in [ 1 l] for plane 
Poiseuille flow between two parallel flat plates and 
circular tube flow. The relatively straightforward 
velocity profile for the plane channel, as compared to 
the complicated one of the current paper, is usefully 
recalled here to demonstrate the character of the flow. 
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where the notation is that of [l I]. Essentially this 
profile affords a basis ofcomparison with the empirical 
power-law models, e.g. in Mahalingam et al. [2], used 
to describe the flow of polymer melts in plane and 
circular channels. At least qualitatively for ,? < 0, it 
exhibits behaviour jn common with the polyacry- 
lamide solutions in [4] and [5] which are shear 
thinning fluids. The parameter Fis proportional to p _ 3 
(pz t b3)cz where E in the absence of body forces is the 
(small) pressure gradient behind the flow, /J > 0 is the 
viscosity of the fluid, and (B2 + p3) is a sum ofmaterial 
parameters to which we are unable to attach a 
preferred sign. Realistically we would not expect c to 
assume other than small values consistent with the 
third-order fluid approximation [see equation (2.13) 
below]. However, it is still worth noting that the 
asymptotic form of r above as 1 t:] + Y, is proportional 
to (1 - x4) which, as a power-law model, is not an 
unreasonable one for plane channel flow of many 
polymer melts. We know of no experimental results 
which would enable us to attribute a magnitude to B 
and have therefore computed results for E values in the 
range I.?] I 1, which we believe to be plausible. We 
have also included F--t - sr,, if only to provide bounds 
on the Nusselt number although, apart from this 
aspect of tidiness and the remark above concerning the 
asymptotic form of the velocity profile for plane 
channel flow, we doubt that these cases have any 
substantial validity within the third order 
approximation. 

2. THE VELOCITY FIELD 

For a homogeneous, incompressible fluid of density 
p subject to conservative specific body force f = 
-grad v, v(x, t) being a scalar valued function com- 
puted on the current locations x of the fluid particles, 
the equation of linear momentum balance has the form 

div S - p grad 4 = pP (2.1) 

where 

T= -pl+S (2.2) 

is the stress tensor, p is an arbitrary hydrostatic 
pressure, and 

For a third-order fluid the determinate stress S has 
the form 

s = i: s,, 

S,=pA,; Sz=a,A2fa,A:; (2.4) 

S3 = PI A3 + P2(A2AI + A,AJ + B&r AJA, 

where p, c(~, c(*, PI, P2, /j3 are material parameters 

which we take to be constant, and A,. A,. A, are the 
first three RivlinEricksen tensors 

A, = +(L + L7’); 

A, = A,__, + LTA,_, + A, ,I,. II = ‘,3 (2.5) 

in which a superposed T denotes transposition and 1, 
= grad x is the velocity gradient. 

A steady lineal flow in a channel of cross section R 1s 

described by 

i = c(r)k; r(r) = 0. YrtiR (2.6) 

where k is a unit normal to the plane of R, r is the 
position of a point in this plane. and dR is the 

boundary of R. Specifically let (x,. x2, .x3) be ortho- 
gonal Cartesian coordinates chosen so that .x3 is in the 
direction of k and boundary 2R is the rectangle given 
by x1 = _ta, x2 = +b. The origin of coordinates is 
situated at the thermal entrance to the channel. It 
follows that equation (2.6) is compatible with the 
equations of motion (2.1) only if 

hold simultaneously. The general solution of equation 
(2.7) is 

p& = --8X3 + l&,.X,), (2.8) 

E being a constant and II/ an arbitrary function of the 
arguments shown. From equations (2.2) and (2.3) one 
then finds 

where T,, is the stress normal to R. The constant 1. is 
thereby identified as the specific driving force in the 
flow. 

The determinate stress S is computed from equa- 
tions (2.4)-(2.6) whence there follows from the equa- 
tions of motion (2.1) together with equation (2.8) 
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In conjunction with equations (2.10)-(2.12) one 
assumes the following expansions appropriate to a 
third-order fluid 

3 

~hx,) = 1 &k~kb,,%); 
k=l 

II/hX2) = i Ektik(Xl,X2) (2.13) 
k=l 

in which terms of order four and higher in E are 
neglected. The equations (2.10) and (2.11) can be 
regarded as determining the potential $(x1,x2) once 
the velocity field has been obtained from (2.12). The 
substitution of the first of equations (2.13) into (2.12) 
leads to 

V$ = - 2 ; v=v2 = 0; 
P 

v=u, + (+)b=‘l {($)’ + (9}+ (2.14) 

where V2 is the Laplacian with respect to x1 and x2. In 
view of the boundary condition in equation (2.6) it is 
clear from the above that v2 = 0. Following a method 
used in [9] the solutions for v1 and v3 in (2.14) have 
been achieved as expansions of orthonormal functions 
which are complete on a rectangle and satisfy (2.6). The 
analysis is protracted but nonetheless straightforward. 
For a channel of aspect ratio y = a/b what emerges is 

v1(x1,x2) = C Earn” 
In.” 

x sin 
mn(x, + a) sin n7r(x2 + b) 

2a 2b 
(2.15) 

in which 

128a2 1 
EZ-.---- 

/U? ’ 
amn = 

mn(d + y=n=) ’ 

(m,n= 1,3,5 ,...) (2.16) 

and 

v,(x,, x2) = 1 Fb,, sin 
m7r(x1 + a) nn(x, + b) 

2a 
sin 

rn.” 2b 
(2.17) 

in which 

F = WW2a4y2(B2 + P3) ; b-,, 
p4d0 

b = 

mn 
m2 + y2n2 ’ 

(m,n = 1,3,5 ,...) (2.18) 

where 

In equation 
meanings 

i 

fl 
S&,= -1 

0 

I 

*1 

CQQrn = 

-1 
0 

1 . 

(2.19) 

(2.19) the symbols have the following 

ifs = Ik+q-ml or s = Ik+m-ql 
ifs = Iq+m-kl or s = k+q+m 
otherwise 

ifs = Ik+q-ml or s = Ik+m-ql 
or s = (q+m-kl, the +(-) 
sign being chosen if a quantity 
inside 1.1 is +(-) 
ifs=k+q+m 
otherwise 

D kmrst = [(k2 +~~p~)(q~+y~r~)(s~+y~t~)]-~. 

Therefore the velocity field in a rectangular channel of 
aspect ratio y is 

v(x,,x,) = hhx2) + ~~~3(xl,x,)P (2.20) 

with u1 and v3 given by equations (2.15) and (2.17). 
The average velocity v. over any cross section of the 
pipe can be evaluated from equation (2.20). We find 

v. = $ zn & (Eamn + ~2%,J. (2.21) 

3. THE TEMPERATURE FIELD 

At x3 = 0, the uniform temperature of the heated fluid 
is To, and T, (< To) is the constant wall temperature of 
the channel for x3 > 0. If mechanical heating in the 
fluid is ignored the temperature field T(x,, x2, x3) 
satisfies the energy equation 

(3.1) 

where v is the lineal flow (2.20). The neglect of 
mechanical heating is a valid approximation for 
sufficiently small Brinkman numbers. It is known, for 
example from Pearson [lo], that this number can vary 
from 0 to co for polymer melts, and for slow flows of 
melts in small bore channels the Brinkman number is 
small. Suitable dimensionless quantities are 

T - T, 
Q=----- 

To - T,’ ’ = 
(1 + y)h + a) 

4a ’ 

(1 + Y)(XZ + b) 
Y= 

4a 
2 _ x3 t3 2j 

dPe ’ 

Pe = pdc,v,k- ’ being the P&let number of the fluid, 
and d = 4a( 1 + y)- 1 is a representative length-it is in 
fact equal to four times the area divided by the 
perimeter of the cross section. When the P&let number 
is large, as is usually the case, e.g. in polymer process- 
ing situations (Pearson [lo]), temperature gradients 
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are small along streamlines and large across them. A 
standard approximation in this case is to retain only 
the transverse heat conduction contributions. The 
dimensionless temperature field is then found to satisfy 

O(.Y, y, z) = 0 on I = 0, (3.3) 

,y = ‘i_; 
2 . 

!: = 0, 
1-t; 

J-3.. 

From equations (2.20), (2.21) and (3.2) there follows 

(3.5) 

The nature of the dependance of c/u0 on g is clearly of 
paramount interest. Typically it has been demon- 
strated in [If] where profiles of U/I+ for plane 
Poiseuille flow between parallel planes have been 
presented. As was pointed out there, negative <values, 
which arise when the material combination (p, + b3) 
is negative, lead to diminished flow in the centre of the 
channel accompanied by a thinning of the region of 
retarded flow at the planes whereas for (: positive a core 
of increased flow is accompanied by a thickening of the 
retarded-flow region, We have mentioned earlier that 
the flow behaviour corresponding to the former case is 
representative of the polyacrylamide solutions used in 
[4] and [5]. Of course equation (3.4) reverts to the 
Newtonian profile if the dimensionless parameter C = 
0, i: > 0. 

The theory of the differential equation (3.3) is 
comprehensively treated by Courant and Hilbert [12]. 
In the present instance its solution is 

f)(x,~z) = x Amn&&,)‘)e-‘~“;; 
M.” 

where 

1 = 1 il,,&,(x.rj (3.6) 
??I.” 

and p, 4, nr, n = 1, 3, 5.. . The coefficients Cpr 
appropriate to the eigensolution 4,. satisfy the follow- 
ing set of homogeneous, algebraic equations, 

and T. A. HAWI I_ 

forp,q,r,h.t,u = 1,3,5 ,.... Wehave used an 
ICL1906Scomputer to solve the equations (3.8). In the 
case of a square channel we have evaluated {A,,,,, C$“‘i 
for (mm) = (1, l), (1,3), (3,3) corresponding to c = -- 1.0, 
0, 1.0 and the numerical values of the eigenvalues are 
displayed in Table 1. For a variety of rectangular 
channels and various values of ?we have computed the 
dominant eigenvalues i-i, which have been used to 
calculate the asymptotic heat-transfer coefficient out- 
side the thermal entrance region. We should mention 
that the results we have obtained for i: .= 0 corroborate 
those of [9] for a Newtonian fluid. 

4. THERMAL REWLTS 

Each h,,, of equations (3.6) and (3.7) has an 
arbitrary amplitude which we choose. for convenience. 
so that 

i 

. 

I$;, dx dy = 
J 

I’ dx dy. (4.1) 
“R R 

Experimental measurements may be made on the basis 
of a mean mixed temperature of the fluid, that is, 
0(x, y, zj averaged with respect to the local Ruid 
velocity over any cross section R of the channel. We 
denote this quantity by B&T) and it is given by 

II /* 

(),dz) = ! u@ dx dv ; 
,’ ! 

i‘ tf s d I. 
.R 3 

(4.2) 

This last equation (4.2) is arrived at through use of 
equations (3.6), (3.7) and (3.4). and it is found that 

c NplrstuC:~)C~“‘Vf” (4.31 
p.q.r.s.t.u 

where the symbols on the RHS have been previously 
defined except 

The local heat-transfer coefficient is the Nusseh 
number given by 

in which d is the representative length in equation (3.2), 
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Table 2 

1.0 2.883 3.343 
0.6 2.925 3.366 
0.3 2.953 3.380 
0 2.97X 3.392 

-0.3 2.999 3.403 
-0.6 3.019 3.413 
- 1.0 3.042 3.424 

- 25.0 3.315 3.543 
- 50.0 3.347 3.555 
--/ 3.387 3.570 

Nu( 7 1 values 
4.442 5.567 6.380 7.430 
4.442 5.579 6.408 7.478 
4.441 5.587 6.427 7.511 
4.440 5.594 6.444 7.541 
4.439 5.600 6.460 7.568 
4.438 5.605 6474 1.594 
4.436 5.611 6.49 I 7.625 
4.400 5.679 6.714 8.074 
4.394 5 6X6 6.144 8.141 
4.387 5.695 6.781 8.227 

P is the perimeter of the cross section R with boundary 

iiR, and Y is normal to 2R. If we recall equations (3.3), 

(3.6) and (4.1) and apply the two dimensional Gauss 
theorem, the definition (4.4) reduces to 

which, in view of (4.2), has the asymptotic value 

Nu(x) = i,,.4. (4.6) 

We have computed several values of A:,, for a square 
channel taking C = - 1 .O, 0 and 1 .O. These are shown in 

Table 1 and have been used to calculate the functions 
0,(z) and Nu(z) which are also displayed there. The 
trend of these functions is rather typical of rectangular 

channels in general and indicates, as was pointed out in 
[ll], that those fluids which exhibit shear thinning 

velocity profiles afford enhanced Nusselt number 
values. 

Values of Nu( z) are displayed in Table 2 for varying 

E values and rectangular channels of various aspect 
ratios 7. The case K = - ^I_ is hardly realistic physically 

but has been included to provide an upper bound on 
the heat-transfer coefficient for negative C values. Also 
the results for the aspect ratio 7 = YI have been taken 

from [II] for plane Poiseuille flow between two 
parallel plates, which is easily shown to be a limiting 
case of the current problem. The results for the circular 
tube which are included are taken from the same 
source. The results in Table 2 show that the asymptotic 
Nusselt number for any C values is increased by some 
150% for large ;’ values as compared with 7 = 1 for the 

square. This corresponds to the figure of 900/, obtained 
by Oliver and Karim [S] for increasingly flattened 
circular tubes. Where the channel is square and C is 
negative, that is the fluid is shear thinning as described 
earlier, there is an enhancement in Nu( z) of up to 14Y,, 
over the Newtonian case C = 0. Comparing the circle 
and the square it is clear that the former yields a greater 
heat-transfer coefficient than the latter for lineal flows 

whether the fluids exhibit normal stress effects or not. 
However, if we define the percentage increase in the 
asymptotic Nusselt number of rectangular channels 
compared to a circular tube as 

3.566 
3.606 
3.633 
3.657 
3.679 
3.699 
3.774 
4 Oh6 
4.144 
4.175 

where subscripts R and C denote rectangle and circle, 
the values in Table 2 indicate general increases of some 
100% for rectangles of large aspect ratio. 
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CONVECTION THERMIQUE FORCEE POUR UN ECOULEMENT 
UNIDIRECTIONNEL DE FLUIDE NON NEWTONIEN DANS 

UN CANAL RECTANGULAIRE 

R&me-On ttudie le flux thermique moyen transfere a la paroi dun canal rectangulaire traverse par un 
fluide non Newtonien, chaud et incompressible. Le fluide, dit communement du troisieme degre, est celui de 
Rivlin-Ericksen d’ordre le plus elevt, lequel s’ecoule dans un icoulement secondaire transversal a l’intirieur 
dun canal rectangulaire. Un coefficient de transfert thermique est evalue pour plusieurs valeurs du parametre 
non Newtonien K et pour differentes geometries depuis le carre jusqu’aux plans paralleles. Les rtsultats 
montrent un accroissement regulier du coefficient de transfert pour une valeur quelconque de E, depuis le 
carrt jusqu’au rectangle allonge. On trouve aussi un accroissement du coefficient de transfert pour les fluides 
qui presentent de forts gradients de vitesse de deformation dans la region de paroi dun canal rectangulaire 

quelconque. 

Zusammenfassung-Untersucht wird die durchschnittliche Warmeiibertragung an die Wand eines 
rechtwinkligen Kanals, wahrend eine erhitzte inkompressible, nicht-Newtonische Flussigkeit dadurch 
bewegt. Die Fliissigkeit ist die, die durchschnittlich ‘dritten Grad’ heisst, und ist die Rivlin-Ericksen 
Fliissigkeit hijchster Ordnung, die geraldlinige Bewegung ohne zweitrangige Kreuzbewegung in einem 
rechtwinkligen Kanal hergeben kann. Ein Warmeiibertragungs-koeffizient ist fiir mehrere Werte eines nicht- 
Newtonischen Parameters, E; und fur eine Klasse rechtwinkliger Geometrien vom Quadrat an einem Ende 
bis zu unbegrentzen, parallelen F&hen am anderen Ende berechnet worden. Die Ergebnisse zeigten 
wachsende Vergrosserung des Warmeiibertragungskoeffizienten fiir irgendeinen Wert von E; an 
Fortbewegung vom Quadrat nach engeren Rechtecken. Es wird such eine Vergrosserung das 
Warmiibertragungskoeffizienten fiir jene Fliissigkeiten gefunden, die in der Nahe der Wand eines 
willkiirlichen rechtwinkligen Kanals grosse Gradienten der Verzerrungsgeschwindigkeit aufweisen. 

BUHYXJIEHHAR TEIIJIOBAJI KOHBEKHMX IIPH IIPJIMOflBHEHHOM TEYEHMB 
HEHbIGTOHOBCKOH XHJIKOCTH B HPJIMOYI’OflbHOM KAHAJIE 

AHHOTaHHH - nOJIy’leHM lIaHHble 06 HHTerpanbHoM TennOO6MeHe B npsMOyrOJtbHOM KaHane npH 
TeYeHHB B HeM HarpeToH HecxHMaeMoi7 HCKH[IKOCTH. I’iCnOJtb3OBaJtaCb MODeJIb Cpe,Bbt ((TpeTberO 
nOpanKab THna PHBJtHHa-3pHKCeHa, KOrJla npH JtaMHHapHOM Te’leHHH OTCyTCTByiOT BTOpH’lHbte 
noneperHbre TOKH. Paccraran x03~&inrierir TennOO6MeHa nns riectronbxrix snarenrifi napabrerpa 
nenbroronoaocrn g n pana reoh4erpufi nonepeqnsxa xariana - 0~ xaaaparnoro no nnocronapan- 
nenbrtoro. npH nro6brx 3Ha’leHHsX E K03@Ht,HeHT TennOO6MeHa Bo3pacTaeT C H3MeHeHHeM nonepes- 
HHKa OT KBaApaTa n0 y3KOrO npBMOyrOJtbHHKa H OKa3blBaeTCB BbIme y XCHnKOCTefi C 6onee BbrCOKHMH 

CKOpOCTIMH CrrBHra B npHCTeHHOii 06nacTH. 


