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Abstract—A study is made of the average rate of heat transferred to the wall of a rectangular channel when a
hot incompressible non-Newtonian fluid flows through it. The fluid is that which is commonly called ‘third
grade’ and is the Rivlin-Ericksen fluid of highest order which can yield rectilinear flow without secondary
cross flow in a rectangular channel. A heat-transfer coefficient has been evaluated for several values of a non-
Newtonian parameter & and for a range of rectangular geometries from the square at one end to inﬁnite_
parallel planes at the other. The results show increasing enhancement of the heat-transfer coefficient for any &
value, on moving away from the square towards narrower rectangles. An increase of the heat-transfer
coefficient is also found for those fluids which exhibit large strain-rate gradients in the wall region of an
arbitrary rectangular channel.

NOMENCLATURE
T, stress tensor;
D, hydrostatic pressure;
S, determinate stress;
o» average velocity;
T, temperature field;
Cps specific heat at constant pressure;
k, thermal conductivity;
Pe, Péclet number ;
d, representative length;
Nu(z), local Nusselt number;
Or(z), local meaned temperature;
W, 0y, 0a, ﬂ 1>
B.,B5,  material parameters;
s, specific driving force;
7, ratio of long to short side of rectangle;
P density;
v, body force potential ;
&, plp +v.

1. INTRODUCTION

THE EVALUATION of the exchange of heat between a hot
Newtonian fluid and the cold wall of the channel in
which it flows has been reviewed extensively in the
literature. On the other hand, relatively little attention
has been given to the heat-transfer problem for
viscoelastic fluids, which is rather surprising in view of
the many applications that it may have. Schenk and
Van Laar [1] and Mahalingam et al. [2] for a circular
tube, Chandrupatla and Sastri [3] for a square chan-
nel, have obtained increases of greater or lesser extent
in the heat-transfer coefficient by using various empiri-
cal models to exhibit non-Newtonian fluid response.
One of the difficulties in the way of a serious analytical
approach is that for viscoelastic fluids rectilinear flow
in channels, aside from those with circular cross

section or consisting of a gap between infinite parallel
planes, is not generally possible because it is well
known that secondary flow occurs in the cross section
of the channel. In recent experimental work Mena et al.
[4] have found enhanced heat transfer for a rec-
tangular channel compared with a circular tube, a
result they attribute to secondary flow. In earlier
experiments, Oliver and Karim [5] had obtained
increases in the heat-transfer coefficient for flattened
(circular) tubes when compared to a circular channel.
These increases they attributed partly to increased
tube-wall shear rate for the flattened tubes and partly
to secondary flow patterns.

An extensive review of viscoelastic response can be
read in [6]. In particular the fluid considered for the
purposes of this report is the third order
Rivlin—Ericksen fluid [7], sometimes called a fluid of
third grade, which may be viewed as an approxi-
mation, to within terms of order three in the time scale,
for slow motions of an incompressible simple fluid [8].
This is the fluid of highest order that is capable of
sustaining rectilinear flow in an arbitrary channel
without secondary transverse flow. By obviating sec-
ondary flow we hope to isolate the effect of wall shear
rate on the heat-transfer coefficient for a variety of
rectangular channels. We find as a general conclusion
that a non-Newtonian parameter £ defined in the text,
which yields increased or decreased strain-rate gra-
dients at the channel wall according to whether it is
negative or positive, leads correspondingly to en-
hanced or diminished heat transfer. This conclusion is
in agreement with results obtained in [11] for plane
Poiseuille flow between two parallel flat plates and
circular tube flow. The relatively straightforward
velocity profile for the plane channel, as compared to
the complicated one of the current paper, is usefully
recalled here to demonstrate the character of the flow.
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D= 3&--[(1 —x?) - i;(l - x“)} x| <1

where the notation is that of [11]. Essentially this
profile affords a basis of comparison with the empirical
power-law models, e.g. in Mahalingam et al. [2], used
to describe the flow of polymer melts in plane and
circular channels. At least qualitatively for £ < 0, it
exhibits behaviour in common with the polyacry-
lamide solutions in [4] and [5] which are shear
Luii‘li‘lmg fluids. The palaluctm gis propor rtional to I

(B; + B;)e? where ¢ in the absence of body forces is the
(small) pressure gradient behind the flow, ¢ > 0 is the
viscosity of the fluid, and (8, + f)is a sum of material
parameters to which we are unable to attach a
preferred sign. Realistically we would not expect £ to
assume other than small values consistent with the
third-order fluid approximation [see equation (2.13)
below]. However, it is still worth noting that the
asymptotic form of v above as |¢]| — 2 is proportional
to (1 — x*) which, as a power-law model, is not an
unreasonable one for plane channel flow of many
polymer melts. We know of no experimental results

shich wonld enable e to attribut m i £
wnien wouiG enaoc:e us 1o alirnouic a uxagn}tude to ¢

and have therefore computed results for £ values in the
range || < 1, which we believe to be plausible. We
have also included £ — — o, if only to provide bounds
on the Nusselt number although, apart from this
aspect of tidiness and the remark above concerning the
asymptotic form of the velocity profile for plane
channel flow, we doubt that these cases have any
substantial  validity ~within the third order
approximation.

2. THE VELOCITY FIELD

For a homogeneous, incompressible fluid of density
p subject to conservative specific body force f =

— grad v, v(x,!) being a scalar valued functlon com-
puted on the current locations x of the fluid particles,
the equation of linear momentum balance has the form
divS — pgrad ¢ = px 2.1)

where
T=-pl+8 2.2)

is the stress tensor, p is an arbitrary hydrostatic
pressure, and

o="C1v (2.3)
p

For a third-order fluid the determinate stress S has
the form

S=

k
Sy =uAy;
S; = By Ay + Br(AA +AA;) + Ba(tr Ap)A

where p, oy, oy, Bi, B2, B3 are material parameters

S,

1

M e

S, = o, A, + ;AL 24
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which we take to be constant, and A,, A,, A, are the
first three Rivlin—Ericksen tensors

A;=3(L+L7);
A=A, +LTA,_, + A, L. n=23

in which a superpo
= grad x is the velocity gradient.
A steady lineal flow in a channel of cross section R is

described by

x = v(r)k; v(r)=0,
where k is a unit normal to the plane of R, r is the
position of a point in this plane, and JR is the
boundary of R. Specifically let (x,, x,, x3) be ortho-
gonal Cartesian coordinates chosen so that x5 is in the

direction of k and boundary ¢R is the rectangle given
hy v = 4+a v. =
by x, +a, x,

situated at the thermal entrance to the channel. It
follows that equation (2.6) is compatible with the

equations of motion (2.1) only if

~2¢ O (fizqﬁ’ 3

ax3

sed T denotes trans

VredR (2.6

4.11 The origin of coordinates is

= 00 OLglh COOrQINAlLs 1>

3

(\;(/)u

hold simultaneously. The general solution of equation
(2.7) is

p = —exy + Y(x,.x1), 2.8)

¢ being a constant and y an arbitrary function of the
arguments shown. From equations (2.2) and (2.3) one
then finds

a

(T35 —pv) ==
7\,

(2.9)

where T, is the stress normal to R. The constant ¢ is
thereby identified as the specific driving force in the
flow.

The determinate

tinnag (Y AV (D) &) wha
UOTIS (2.5 )j714.0) WIiK

tions of motion (2.1) together with equation (2.8)

5‘%(4 )avw ;
oy + o + oo
ax, | P\ axy éxs

('H"L‘ fv ) Gy

R

stress S is computed from equa-

ence there follows from tha aana.
1CC waCIC 10uOWS IO UL Squd

{(441 + o) — (2.10)
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01)
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In conjunction with equations (2.10)-(2.12) one
assumes the following expansions appropriate to a
third-order fluid

3

v(xy,Xx;) = Z skvk(xth);
k=1

3
Y(xg,xz) = Z skwk(xnxz) (2.13)
k=1
in which terms of order four and higher in ¢ are
neglected. The equations (2.10) and (2.11) can be
regarded as determining the potential ¥(x,, x,) once
the velocity field has been obtained from (2.12). The
substitution of the first of equations (2.13) into (2.12)
leads to
2
Vip, = ——;
u

B.+pB oo N> [ov \?
Vzuﬁ( = 3>[sz1 {<5> +<5x—) }+ 14

dv, ov, 0%,
0xy 0x, 0x,0x,

po{(BuY Bu (Y Pul]
ox, ) 0x3 dx,/) 0x3

where V2 is the Laplacian with respect to x; and x,. In
view of the boundary condition in equation (2.6) it is
clear from the above that v, = 0. Following a method
used in [9] the solutions for v; and v; in (2.14) have
been achieved as expansions of orthonormal functions
which are complete on a rectangle and satisfy (2.6). The
analysis is protracted but nonetheless straightforward.
For a channel of aspect ratio y = a/b what emerges is

vy(xy,%3) = Z Ea,,,

Vv, =0;

mn(x, + a) sin nn(x, + b)

X sin a % (2.15)
in which
E= E’EZ— ;A = —————1
ur* 7™ mn(m? + y*n?)’
(mn=13,5,.) (216)
and

v3(X1,%,) = Y, Fb,,sin mn(x21a+ %) sin mz(xzzb+ b)

(2.17)
in which
P2 202800 By 4B By

; =
4,10 mn m2+y2n2’

un
(mn=135,..) (2.18)

where

D=

k.p.q.r.s.t

4
l:—q 5iqm 5:pn kaqrst
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1/(3q t\_.
~I;<ﬁ+a> kqméiankpsrqr

1 /s 3y .
- Fq(; + T 5:pn Iszqm Dktqrsp .

(2.19)
In-equation (2.19) the symbols have the following
meanings

+1 ifs=|k+gq—m| ors=|k+m—gq|

i -1 ifs=|g+m—k| ors=k+q+m
0 otherwise

t1 ifs=|k+g—m| ors=|k+m—g|
or s=|q+m—k|, the +(-)
sign being chosen if a quantity
inside || is +(—)
-1 ifs=k+q+m
0 otherwise

Dypgrse = [(K2 +77p?)(@* + 72 r7) (s> +77)] .

Therefore the velocity field in a rectangular channel of
aspect ratio y is

s
kgqm

(2.20)

with v; and v; given by equations (2.15) and (2.17).
The average velocity v, over any cross section of the
pipe can be evaluated from equation (2.20). We find

v(xy,%,) = {ev, (x4, x,) + £2v3(x5, %)}k

4¢ 1
vO = ? Z %(Eamn + EZFbmn)' (221)

3. THE TEMPERATURE FIELD

At x5 =0, the uniform temperature of the heated fluid
is To,and T (< T,)is the constant wall temperature of
the channel for x; > 0. If mechanical heating in the
fluid is ignored the temperature field T(x,, x,, x;)
satisfies the energy equation

T T T &
g k(— ~ Q) (3.1)

CU—— = + +
Py 0x5 ox?  oxt ox3

where v is the lineal flow (2.20). The neglect of
mechanical heating is a valid approximation for
sufficiently small Brinkman numbers. It is known, for
example from Pearson [10], that this number can vary
from 0 to oo for polymer melts, and for slow flows of
melts in small bore channels the Brinkman number is
small. Suitable dimensionless quantities are

O—T_T1 x__(1+y)(x1+a)
T T,-T, T 4a ’
_ (0 +9)x2+b) _ X3
ST w0 PTape ©P

Pe = pdc,vok ™" being the Péclet number of the fluid,
andd = 4a(1 + y)~!isarepresentative length—itis in
fact equal to four times the area divided by the
perimeter of the cross section. When the Péclet number
is large, as is usually the case, e.g. in polymer process-
ing situations (Pearson [10]), temperature gradients
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are small along streamlines and large across them. A
standard approximation in this case is to retain only
the transverse heat conduction contributions. The
dimensionless temperature field is then found to satisfy

a0

v
Vi =— - B8(xp0)=1;
tg €z
8(x,y,2)=0 on x=40, (3.3}
1+~ T+
X = —_;[ ,oy=0, v= 2 g

From equations (2.20), (2.21) and (3.2) there follows

v

m b 2 Y
— e Z (@ + JEb,,,)sin "X gin 17

. K{”} T+, 071
(3.4

where

. lea’(B,+B5) 2. 16y%(y +1)?
I ITRre A e I =
wi(l+y) n
4 1 _
K&} = 2 — Aty + D, (3.5)

m.n

The nature of the dependance of v/v, on £ is clearly of
paramount interest. Typically it has been demon-
strated in [11] where profiles of /v, for plane
Poiseuille flow between parallel planes have been
presented. As was pointed out there, negative £ values,
which arise when the material combination (5, + f3)
is negative, lead to diminished flow in the centre of the
channel accompanied by a thinning of the region of
retarded flow at the planes whereas for ¢ positive a core
of increased flow is accompanied by a thickening of the
retarded-flow region. We have mentioned earlier that
the flow behaviour corresponding to the former case is
representative of the polyacrylamide solutions used in
[4] and [5]. Of course equation (3.4) reverts to the
Newtonian profile if the dimensioniess parameter § =
0,6 > 0.

The theory of the differential equation (3.3) is
comprehensively treated by Courant and Hilbert [12].
In the present instance its solution is

0(x,.2) = 3. Apu@nlX, y)e

1= Y Apbalx.r) (36)

where
2pnx . 2qn,v
- C(mm T gin 3.7
Pounl X, ¥} = Z sn1+y51 e (3.7
and p, g, m.n = 1,3, 5,.... The coefficients Cip™

appropriate to the eigensolution ¢,,, satisfy the follow-
ing set of homogeneous, algebraic equations,
MP‘IC(P';") = Apn Z
parsSiy

x N CmiMa,, + Jéb,) (3.8)

pqrsiu

where

N. T. Dunwoopy and T. A. Hamn L

M, = p* + 7%,

Amn - (14+ ‘k }2 Amns
K(£)
N s oo
parsiu ;rz - (I — p) rt -4 p)
(o L
W g w R

for p, ¢, r. s, t, u = 1,3, 5,.... We have used an
ICL.19068 computer to solve the equations (3.8). In the
case of a square channel we have evaluated {4,,,, C7™
for (mm) = (1, 1), (1,3), (3,3) corresponding to £ = — 1.0,
0, 1.0 and the numerical values of the eigenvalues are
displayed in Table 1. For a variety of rectangular
channels and various values of Zwe have computed the
dominant eigenvalues 4., which have been used to
calculate the asymptotic heat-transfer coefficient out-
side the thermal entrance region. We should mention
that the results we have obtained for i = Qcorroborate
those of {9] for a Newtonian fluid.

4. THERMAL RESULTS

Each ¢,, of equations (3.6) and (3.7) has an
arbitrary amplitude which we choose, for convenience,
so that

[ v, dxdy = J

o

edxdy.
R

(4.1}

Experimental measurements may be made on the basis
of a mean mixed temperature of the fluid, that is,
6(x, y, z) averaged with respect to the local fluid
velocity over any cross section R of the channel. We
denote this quantity by 6,,(z) and it is given by

Oylz) = vfdxdy / tdxdy
Jr f R
=3 Am¢ (4.2)

This last equation (4.2) is arrived at through use of
equations (3.6), (3.7) and (3.4), and it is found that

2 nl 1 {mn) : ;
Am = 1¢ K@ 2 Z Coa" Vo |

/ {mn) e imn)
Z Npqrsrucrs C’pq Vru

pyg.r.stu

4.3

where the symbols on the RHS have been previously
defined except

Vo = g + J b,

The local heat-transfer coefficient is the Nusselt
number given by

I ~

— d, ¢ {0 ds
POy Top v

N

Nu(z) = (4.4)

in which d is the representative length in equation (3.2},
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\ 10 20 40

1.0 2.883 3.343 4.442
0.6 2925 3.366 4.442
0.3 2953 3.380 4.441
0 2978 3.392 4.440
-0.3 2999 3.403 4.439
—0.6 3.019 3413 4.438
-1.0 3.042 3424 4.436
-250 3315 3.543 4.400
~50.0 3.347 3.555 4.394
~

3.387 3.570

P is the perimeter of the cross section R with boundary
OR, and v is normal to ¢R. If we recall equations (3.3),
(3.6) and (4.1) and apply the two dimensional Gauss
theorem, the definition (4.4) reduces to

1 . :
) Z Arznn/'mne o

Nu(Z) = Lﬂj
M m.on

(4.5)

which, in view of (4.2), has the asymptotic value

Nu(%) = iyy/4. (4.6)

We have computed several values of A2, for a square
channel taking ¢ = —1.0,0and 1.0. These are shown in
Table 1 and have been used to calculate the functions
Oy(2) and Nu(z) which are also displayed there. The
trend of these functions is rather typical of rectangular
channelsin general and indicates, as was pointed out in
[11], that those fluids which exhibit shear thinning
velocity profiles afford enhanced Nusselt number
values.

Values of Nu(~ )are displayed in Table 2 for varying
¢ values and rectangular channels of various aspect
ratios 7. The case £ = —  is hardly realistic physically
but has been included to provide an upper bound on
the heat-transfer coefficient for negative ¢ values. Also
the results for the aspect ratio y = « have been taken
from [11] for plane Poiseuille flow between two
parallel plates, which is easily shown to be a limiting
case of the current problem. The results for the circular
tube which are included are taken from the same
source. The results in Table 2 show that the asymptotic
Nusselt number for any & values is increased by some
150%, for large y values as compared with y = 1 for the
square. This corresponds to the figure of 907, obtained
by Oliver and Karim [5] for increasingly flattened
circular tubes. Where the channel is square and 7 is
negative, that is the fluid is shear thinning as described
earlier, there is an enhancement in Nu(x) of up to 149,
over the Newtonian case £ = 0. Comparing the circle
and the square it is clear that the former yields a greater
heat-transfer coefficient than the latter for lineal flows
whether the fluids exhibit normal stress effects or not.
However, if we define the percentage increase in the
asymptotic Nusselt number of rectangular channels
compared to a circular tube as

Table 2.

4.387
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5.0 16.0 b2 Circle
Nu(~.) values

5.567 6.380 7.430 3.566
5.579 6.408 7.478 3.606
5.587 6.427 7511 3.633
5.594 6.444 7.541 3.657
5.600 6.460 7.568 3679
5.605 6.474 7.594 3.699
5611 6.491 7.625 3724
5.679 6.714 8.074 4066
5.686 6.744 8.141 4.144
5.695 4175

6.781 8.227

_ Nu(x)g — Nu(7 ),
B Nu( ).

0,
o

x 100

where subscripts R and C denote rectangle and circle,
the values in Table 2 indicate general increases of some
1007, for rectangles of large aspect ratio.
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CONVECTION THERMIQUE FORCEE POUR UN ECOULEMENT
UNIDIRECTIONNEL DE FLUIDE NON NEWTONIEN DANS
UN CANAL RECTANGULAIRE

Résumeé—On étudie le flux thermique moyen transféré a la paroi d’un canal rectangulaire traversé par un
fluide non Newtonien, chaud et incompressible. Le fluide, dit communément du troisiéme degré, est celui de
Rivlin—Ericksen d’ordre le plus élevé, lequel s’écoule dans un écoulement secondaire transversal a I'intérieur
d’un canal rectangulaire. Un coefficient de transfert thermique est évalué pour plusieurs valeurs du paramétre
non Newtonien £ et pour différentes géométries depuis le carré jusqu'aux plans paralléles. Les résultats
montrent un accroissement régulier du coefficient de transfert pour une valeur quelconque de &, depuis le
carré jusqu’au rectangle allongé. On trouve aussi un accroissement du coefficient de transfert pour les fluides
qui présentent de forts gradients de vitesse de déformation dans la région de paroi d’un canal rectangulaire
quelconque.

Zusammenfassung—Untersucht wird die durchschnittliche Warmeiibertragung an die Wand eines
rechtwinkligen Kanals, wihrend eine erhitzte inkompressible, nicht-Newtonische Flussigkeit dadurch
bewegt. Die Fliissigkeit ist die, die durchschnittlich ‘dritten Grad’ heisst, und ist die Rivlin—Ericksen
Fliissigkeit hochster Ordnung, die geraldlinige Bewegung ohne zweitrangige Kreuzbewegung in einem
rechtwinkligen Kanal hergeben kann. Ein Wirmeiibertragungs-koeffizient ist fiir mehrere Werte eines nicht-
Newtonischen Parameters, £, und fiir eine Klasse rechtwinkliger Geometrien vom Quadrat an einem Ende
bis zu unbegrentzen, parallelen Flichen am anderen Ende berechnet worden. Die Ergebnisse zeigten
wachsende Vergrosserung des Wairmeiibertragungskoeffizienten fiir irgendeinen Wert von £, an
Fortbewegung vom Quadrat nach engeren Rechtecken. Es wird auch eine Vergrdsserung das
Wirmiibertragungskoeffizienten fiir jene Fliissigkeiten gefunden, die in der Nihe der Wand eines
willkiirlichen rechtwinkligen Kanals grosse Gradienten der Verzerrungsgeschwindigkeit aufweisen.

BbIHYXJAEHHAA TEIJIOBASI KOHBEKLIUS IPU MPAMOJHUHEAHOM TEYEHUU
HEHBIOTOHOBCKOH XHMIKOCTH B MPAMOYTOJIbLHOM KAHAIJIE

Annorauns — [losiyyeHsl JaHHbIE 06 HHTErpaJbHOM TEMIIOOOMEHE B NPAMOYLOJLHOM KaHaj€E MNpH
TEYEHWH B HEM HArpeTod HecxkuMaemoil xuIKOCcTH. Hcnone3oBajack MOAeNb CPeAbl «TPETLETO
nopaaxa» THna PuBAHHa~DpHKCeHa, KOTa NPH JIAMHHADHOM TEYEHHH OTCYTCTBYIOT BTOPHHMHBIE
nonepeynbie TOKH. Paccumran ko3p¢unMeHT TennooOMeHa NS HECKONBKHX 3HaueHHMHl mapamerpa
HEHBIOTOHOBOCTH ¢ H Psla IFEOMETPHH MonepeyHHKa KaHaka — OT KBaAPaTHOro A0 MJIOCKOmapan-
nenbHOTOo. I1pH Mo6bIX 3HaueHHAX £ K03DPHUHEHT TenIoO6MeHa BO3PACTAET C M3MEHEHHEM Tonepey-
HHKa OT KBaJpaTa [0 Y3KOTo MPAMOYTOJIbHHKA H OKa3bIBaETCH BBILIE Y XHAKOCTEH ¢ Doslee BHICOKHMH
CKOPOCTAMH CIABHIa B NPHCTEHHOI obnactu.
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